Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 10(89): 20130726, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24068179

RESUMO

Many biological tissues are viscoelastic, behaving as elastic solids on short timescales and fluids on long timescales. This collective mechanical behaviour enables and helps to guide pattern formation and tissue layering. Here, we investigate the mechanical properties of three-dimensional tissue explants from zebrafish embryos by analysing individual cell tracks and macroscopic mechanical response. We find that the cell dynamics inside the tissue exhibit features of supercooled fluids, including subdiffusive trajectories and signatures of caging behaviour. We develop a minimal, three-parameter mechanical model for these dynamics, which we calibrate using only information about cell tracks. This model generates predictions about the macroscopic bulk response of the tissue (with no fit parameters) that are verified experimentally, providing a strong validation of the model. The best-fit model parameters indicate that although the tissue is fluid-like, it is close to a glass transition, suggesting that small changes to single-cell parameters could generate a significant change in the viscoelastic properties of the tissue. These results provide a robust framework for quantifying and modelling mechanically driven pattern formation in tissues.


Assuntos
Embrião não Mamífero/citologia , Modelos Biológicos , Peixe-Zebra/embriologia , Animais , Fenômenos Biomecânicos , Comunicação Celular , Embrião não Mamífero/ultraestrutura , Desenvolvimento Embrionário , Dinâmica não Linear , Técnicas de Cultura de Tecidos
2.
J Exp Biol ; 214(Pt 21): 3518-23, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21993779

RESUMO

We have developed a 'Scan-Add-Print' database system, SAPling, to track and monitor asexually reproducing organisms. Using barcodes to uniquely identify each animal, we can record information on the life of the individual in a computerized database containing its entire family tree. SAPling has enabled us to carry out large-scale population dynamics experiments with thousands of planarians and keep track of each individual. The database stores information such as family connections, birth date, division date and generation. We show that SAPling can be easily adapted to other asexually reproducing organisms and has a strong potential for use in large-scale and/or long-term population and senescence studies as well as studies of clonal diversity. The software is platform-independent, designed for reliability and ease of use, and provided open source from our webpage to allow project-specific customization.


Assuntos
Sistemas de Identificação Animal/métodos , Bases de Dados Factuais , Processamento Eletrônico de Dados/métodos , Planárias/fisiologia , Reprodução Assexuada , Software , Animais , Dinâmica Populacional , Especificidade da Espécie
3.
J Exp Biol ; 214(Pt 7): 1063-7, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21389189

RESUMO

Changes in animal behavior resulting from genetic or chemical intervention are frequently used for phenotype characterizations. The majority of these studies are qualitative in nature, especially in systems that go beyond the classical model organisms. Here, we introduce a quantitative method to characterize behavior in the freshwater planarian Schmidtea mediterranea. Wild-type locomotion in confinement was quantified using a wide set of parameters, and the influences of intrinsic intra-worm versus inter-worm variability on our measurements was studied. We also examined the effect of substrate, confinement geometry and the interactions with the boundary on planarian behavior. The method is based on a simple experimental setup, using automated center-of-mass tracking and image analysis, making it an easily implemented alternative to current methods for screening planarian locomotion phenotypes. As a proof of principle, two drug-induced behavioral phenotypes were generated to show the capacity of this method.


Assuntos
Planárias/fisiologia , Anestésicos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Clorobutanol/farmacologia , Antagonistas de Dopamina/farmacologia , Genótipo , Locomoção/efeitos dos fármacos , Microscopia de Vídeo/métodos , Fenótipo , Planárias/genética , Sulpirida/farmacologia
4.
Phys Biol ; 8(2): 026003, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21263170

RESUMO

Asexual reproduction in multicellular organisms is a complex biophysical process that is not yet well understood quantitatively. Here, we report a detailed population study for the asexual freshwater planarian Schmidtea mediterranea, which can reproduce via transverse fission due to a large stem cell contingent. Our long-term observations of isolated non-interacting planarian populations reveal that the characteristic fission waiting time distributions for head and tail fragments differ significantly from each other. The stochastic fission dynamics of tail fragments exhibits non-negligible memory effects, implying that an accurate mathematical description of future data should be based on non-Markovian tree models. By comparing the effective growth of non-interacting planarian populations with those of self-interacting populations, we are able to quantify the influence of interactions between flatworms and physical conditions on the population growth. A surprising result is the non-monotonic relationship between effective population growth rate and nutrient supply: planarians exhibit a tendency to become 'obese' if the feeding frequency exceeds a critical level, resulting in a decreased reproduction activity. This suggests that these flatworms, which possess many genes homologous to those of humans, could become a new model system for studying dietary effects on reproduction and regeneration in multicellular organisms.


Assuntos
Memória , Obesidade , Planárias/fisiologia , Reprodução Assexuada , Animais , Abastecimento de Alimentos , Biologia de Ecossistemas de Água Doce , Região do Mediterrâneo , Modelos Animais , Planárias/crescimento & desenvolvimento , Dinâmica Populacional
5.
HFSP J ; 2(1): 42-56, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19404452

RESUMO

This study provides direct functional evidence that differential adhesion, measurable as quantitative differences in tissue surface tension, influences spatial positioning between zebrafish germ layer tissues. We show that embryonic ectodermal and mesendodermal tissues generated by mRNA-overexpression behave on long-time scales like immiscible fluids. When mixed in hanging drop culture, their cells segregate into discrete phases with ectoderm adopting an internal position relative to the mesendoderm. The position adopted directly correlates with differences in tissue surface tension. We also show that germ layer tissues from untreated embryos, when extirpated and placed in culture, adopt a configuration similar to those of their mRNA-overexpressing counterparts. Down-regulating E-cadherin expression in the ectoderm leads to reduced surface tension and results in phase reversal with E-cadherin-depleted ectoderm cells now adopting an external position relative to the mesendoderm. These results show that in vitro cell sorting of zebrafish mesendoderm and ectoderm tissues is specified by tissue interfacial tensions. We perform a mathematical analysis indicating that tissue interfacial tension between actively motile cells contributes to the spatial organization and dynamics of these zebrafish germ layers in vivo.

6.
Dev Cell ; 9(4): 555-64, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16198297

RESUMO

Wnt11 plays a central role in tissue morphogenesis during vertebrate gastrulation, but the molecular and cellular mechanisms by which Wnt11 exerts its effects remain poorly understood. Here, we show that Wnt11 functions during zebrafish gastrulation by regulating the cohesion of mesodermal and endodermal (mesendodermal) progenitor cells. Importantly, we demonstrate that Wnt11 activity in this process is mediated by the GTPase Rab5, a key regulator of early endocytosis, as blocking Rab5c activity in wild-type embryos phenocopies slb/wnt11 mutants, and enhancing Rab5c activity in slb/wnt11 mutant embryos rescues the mutant phenotype. In addition, we find that Wnt11 and Rab5c control the endocytosis of E-cadherin and are required in mesendodermal cells for E-cadherin-mediated cell cohesion. Together, our results suggest that Wnt11 controls tissue morphogenesis by modulating E-cadherin-mediated cell cohesion through Rab5c, a novel mechanism of Wnt signaling in gastrulation.


Assuntos
Caderinas/metabolismo , Gástrula/fisiologia , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Caderinas/genética , Adesão Celular , Movimento Celular/fisiologia , Endocitose/fisiologia , Gástrula/citologia , Morfogênese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Peixe-Zebra/anatomia & histologia , Proteínas de Peixe-Zebra/genética , Proteínas rab5 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...